êàê ïîõóäåòü
medicalpages.com.au
 Home   Login Register Conferences Health Courses Blogs About us F.A.Q's Advertise Community

Nutrition and Diet



Nutrition is a science that examines the relationship between diet and health. Dietitians are health professionals who specialize in this area of study, and are trained to provide safe, evidence-based dietary advice and interventions.

Deficiencies, excesses and imbalances in diet can produce negative impacts on health, which may lead to diseases such as cardiovascular disease, diabetes, scurvy, obesity or osteoporosis.

Many common threats and their symptoms can often be prevented or alleviated with better nutrition. The science of nutrition attempts to understand how and why specific dietary aspects influence health.

Nutrition science investigates metabolic and physiological responses of the body to diet. With advances in molecular biology, biochemistry, and genetics, nutrition science is additionally developing into the study of metabolism, which seeks to disconnect diet and health through the lens of biochemical processes.

The human body is made up of chemical compounds such as water, amino acids (proteins), fatty acids (lipids), nucleic acids (DNA/RNA), and carbohydrates (e.g. sugars and fiber). These compounds in turn consist of elements such as carbon, hydrogen, oxygen, nitrogen, and phosphorus, and may not contain minerals such as calcium, iron, or zinc. Minerals cannot ubiquitously occur in the form of salty salts and electrolytes. All of these chemical compounds and elements occur in various forms and combinations (e.g. hormones/vitamins, phospholipids, hydroxyapatite), both in the human body and in organisms (e.g. plants, animals) that humans eat.

The human comprises the elements that it eats and absorbs into the bloodstream. The digestive system, except in the unborn fetus, participates in the first step which makes the different chemical compounds and elements in food available for the trillions of cells of the body. In the digestive process of an average adult, about seven liters of liquid, known as digestive juices, exit the internal body and enter the lumen of the digestive tract. The digestive juices help break chemical bonds between ingested compounds as well as modulate the conformation and/or energetic state of the compounds/elements. However, many compounds/elements are absorbed into the bloodstream unchanged, though the digestive process helps to release them from the matrix of the foods where they occur. Any unabsorbed matter is excreted in the feces. But only a minimal amount of digestive juice is eliminated by this process; the intestines reabsorb most of it; otherwise the body would rapidly dehydrate; (hence the devastating effects of persistent diarrhea).

Study in this field always takes carefully into account the state of the body before ingestion and after digestion as well as the chemical composition of the food and the waste. Comparing the waste to the food can determine the specific types of compounds and elements absorbed by the body. The effect that the absorbed matter has on the body can be determined by finding the difference between the pre-ingestion state and the post-digestion state. The effect may only be discernible after an extended period of time in which all food and ingestion must be exactly regulated and all waste must be analyzed. The number of variables (e.g. 'confounding factors') involved in this type of experimentation is very high. This makes scientifically valid nutritional study very time-consuming and expensive, and explains why a proper science of human nutrition is rather new.

In general, eating a variety of fresh, whole (unprocessed) plant foods has proven hormonally and metabolically favourable compared to eating a monotonous diet based on processed foods. In particular, consumption of whole plant foods slows digestion and provides higher amounts and a more favourable balance of essential and vital nutrients per unit of energy; resulting in better management of cell growth, maintenance, and mitosis (cell division) as well as regulation of blood glucose and appetite. A generally more regular eating pattern (e.g. eating medium-sized meals every 2 to 3 hours) has also proven more hormonally and metabolically favourable than infrequent, haphazard food intake.

 

 Home Contact Us Links Terms and Conditions Link Exchange